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Monte Carlo simulation has been performed on a classical two-dimensional XY model with a modified form
of interaction potential to investigate the role of topological defects on the phase transition exhibited by the
model. In simulations in a restricted ensemble without defects, the system appears to remain ordered at all
temperatures. Suppression of topological defects on the square plaquettes in the modified XY model leads to
complete elimination of the phase transition observed in this model.
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I. INTRODUCTION

In 1984, Domany et al. �1� introduced an extension of the
two-dimensional �2D� XY model where the classical spins
�of unit length�, located at the sites of a square lattice and
free to rotate in a plane, say the XY plane �having no z
component�, interact with nearest neighbors through a modi-
fied potential

V��ij� = 2�1 − �cos2�ij

2
�p2� �1�

where 	�ij	 is the angle between the nearest-neighbor spins
and p2 is a parameter used to change the shape of the poten-
tial. For p2=1, the potential reduces to that of a conventional
XY model while with the increase in p2, the potential well
gets narrower with a width 
� / p and for ��� / p it is es-
sentially constant at V���=2. The shape of the potential is
shown in Fig. 1 for several values of p2. The conventional
2D XY model does not possess any true long-range order �2�,
and it is known that in this model, nonsingular spin-wave
excitations alone cannot destroy the quasilong-range order
�QLRO�. However, the presence of topological defects leads
to a QLRO-disorder phase transition, now familiar as the
Kosterlitz-Thouless �KT� phase transition. Kosterlitz and
Thouless �3,4� predicted that topological singularities are
both necessary and sufficient for the QLRO-disorder phase
transition in the 2D XY model, and using a renormalization-
group �RG� approach they established that the phase transi-
tion is mediated by unbinding of vortices and antivortices
which are stable topological defects in this system. The
phase with QLRO is characterized by a slow algebraic decay
of the spin-spin correlation function whereas a fast exponen-
tial decay is observed in a disordered system. The KT tran-
sition in the 2D XY model was unambiguously confirmed
numerically by Irving and Kenna �5�.

The modified XY model of Eq. �1� has been analyzed by a
number of investigators �1,6–15�, and they all were of the
opinion that it exhibits a first-order phase transition for large
values of p2. However, some investigators �16–18� attempted
to interpret the Monte Carlo �MC� results for the first-order

phase transition in other ways. In a recent work �19� we have
shown by performing extensive numerical simulations on
relatively larger lattice sizes �up to 192�192� that the modi-
fied XY model for large values of p2 exhibits first-order
phase transition and all the finite-size scaling rules for a first-
order phase transition were seen to be obeyed accurately. Van
Enter and Shlosman �12,20� provided a rigorous proof of a
first-order phase transition in various SO�n�-invariant
n-vector models which have a deep and narrow potential
well, and the model under investigation is a member of this
general class of systems.

It was argued in Ref. �1� that more than one type of ex-
citations �i.e., topological excitations as well as vacancy ex-
citations� may play a role in changing the nature of the phase
transition, as one would become relatively more important
than the other by the alteration of the potential. Later Him-
bergen argued that topological excitations alone are sufficient
to account for both the continuous and the first-order phase
transitions but in a qualitatively different manner �6�. Alge-
braic topology or homotopy theory in the study of defects
�21,22� has a wide application in the physics of phase tran-
sition. In the present paper, we investigate the role of topo-
logical defects in the phase transition of the modified XY
model under consideration. We are specifically interested in
inquiring whether the first-order phase transition in the modi-
fied XY model is defect driven or not. In other words, in the
absence of the role played by topological defects, would one
observe the same order-disorder phase transition as the one
found in the system with topological defects? If suppression
of the defects changes the nature of the phase transition or
eliminates it altogether, one may conclude that topological
defects are necessary to describe the phase transition
correctly.

The present work was motivated to great extent by the
work of Lau and Dasgupta �23� and Dutta and Roy �24�. Lau
and Dasgupta showed that hedgehogs �point singularities in
the three-dimensional �3D� Heisenberg model� are necessary
for the phase transition in 3D Heisenberg model. They ob-
served that if the formation of topological defects is sup-
pressed in the 3D Heisenberg model, the system remains
ordered at all temperatures and the transition to the disor-
dered phase disappears altogether. Dutta and Roy performed
MC simulations on planer P2 and P4 models which are
known to exhibit a continuous and a first-order phase transi-
tion, respectively. The planar P2 model or the Lebwohl-
Lasher �LL� model is defined by the Hamiltonian H
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=−��ij
P2�cos �� where �ij
 represents the nearest-neighbor
molecular positions and � is the angle between the nearest-
neighbor molecules. P2 is the second-order Legendre poly-
nomial and the planar P2 model represents a two-
dimensional nematic liquid crystal. The planar P4 model �or
the modified LL model� is described by the Hamiltonian H
=−��ij
P4�cos �� where P4 represents the fourth-order Leg-
endre polynomial. In both the models, the lattice dimension-
ality d=2 and the spin dimensionality n=3. It was noticed
that the suppression of the defects in these models leads to a
total disappearance of the phase transitions observed in these
systems �24�. Other work, along the same line, which should
be mentioned in this context, is that of Lammert et al. �25�.
These authors showed in a MC study that the nature of the
nematic-isotropic transition changes when one suppresses
the formation of the stable line defects, called the disclina-
tion lines.

In the present work, we have found that topological de-
fects are necessary for the existence and also for proper de-
scription of phase transitions exhibited by these class of
models. We also find that the change in the nature of the
phase transition that is observed with the change in the value
of p2 is due to a change in the role played by the topological
defects in these systems.

We arrange the rest of the paper as follows: Sec. II de-
scribes the simulational procedures used in the present work.
The results and discussions are then presented in Sec. III
followed by the concluding remarks.

II. SIMULATION DETAILS

In order to study the behavior of the topological excita-
tions and the role of topological defects in the phase transi-
tions exhibited by the model under investigation, we have
used the conventional Metropolis single spin update algo-
rithm �26,27� with some modifications in our MC simulation.
We have found that while simulating a continuous lattice
spin model using standard Metropolis algorithm, we need to
adjust a parameter very carefully to generate a configuration.
This parameter determines the amplitude of the random an-
gular displacements of the spins and the results become very
sensitive to the value of this parameter. In order to get rid of
this difficulty of choosing the parameter, we generate a spin

configuration following the prescription of Wolff �28�. We
take a random unit vector r� and a spin flip s�→s�� is defined as
s��=s�−2�s� ,r��r� where �s� ,r�� is the dot product of s� and r�. Apart
from this method of generating a configuration, the rest of
the algorithm is the standard Metropolis algorithm. Defining
a spin flip in that way, our modified Metropolis algorithm is
free from tuning any adjustable parameter while simulating a
lattice spin model with continuous energy spectrum while the
conditions of ergodicity and detailed balance remain ful-
filled. The Metropolis algorithm runs as follows: first we
choose a spin at random from within the specified range.
Then the change in energy �E associated with an attempted
move is calculated. If �E�0, the attempted move is ac-
cepted. If �E�0, the attempted move is accepted with prob-
ability exp�−�E /T� where T is the dimensionless
temperature.

The average defect pair density is calculated in the fol-
lowing way. A vortex �antivortex� is a topological defect in
which the angle variable �, specifying the direction of the
order parameter, changes by 2��−2�� in one circuit of any
closed contour enclosing the excitation core. In order to trace
out the topological defects, we consider a square plaquette in
the physical space. Let s�1, s�2, s�3, and s�4 be the four spins at
the corners of the square plaquette. The angles between these
adjacent spins are calculated with proper sign and these are
then summed algebraically to find the total angle. The square
plaquette is said to enclose a vortex �topological charge Q
=1� when the sum equals 2� or more precisely very close to
2�, taking into account the possible numerical errors. The
square plaquette is said to enclose a antivortex �topological
charge Q=−1� if the sum equals −2�. If the sum is zero,
there is no topological defect in the plaquette. Average defect
pair density �taking into consideration both vortices and an-
tivortices� is calculated as the thermodynamic average of the
absolute value of the vorticity summed over the entire lattice
divided by the total number of spins. In this method, it is
ensured that the net topological charge is always equal to
zero in a system with periodic boundary conditions. It should
be mentioned here that the smallest part of the system in real
space that encloses a Q= �1 point defect is a triangle. We
can divide each elementary square plaquette diagonally into
two triangles. One could thus consider a triangular plaquette
in the physical space as well to trace out topological defects.
We have tested that the total number of topological charges
in the entire lattice remains the same whether we choose a
square plaquette or a triangular plaquette. Only topological
charges of strength Q= �1 are considered since they are
energetically favorable. In our investigation of the equilib-
rium behavior of topological defects near phase transition,
we carried out simulations on system sizes with linear di-
mension L=16, 32, 48, and 64 with periodic boundary con-
ditions. 105 Monte Carlo sweeps �MCS� were used for
equilibration and 106 MCS were used for calculating thermo-
dynamic averages. One MC sweep is said to be completed
when the number of attempted single spin moves equals the
total number of spins in the system. The values of p2 taken to
study the variation in average defect pair density with p2 are
4, 9, 16, 25, 36, 50, 64, 81, and 100.

In order to implement the procedure of the suppression of
topological defects in our model, a “chemical-potential” term
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FIG. 1. The potential function of Eq. �1� is shown for different
values of p2.
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associated with the topological charges is included �23,24�.
The modified Hamiltonian in the simulation is given by

Hm = �
�ij


2�1 − �cos2�ij

2
�p2� + 	�

ijkl

	Qijkl	 �2�

where �ij is the angle between the nearest-neighbor spins i, j
and 	Qijkl	 is the absolute value of the charge enclosed by the
square plaquette. A positive value of 	 ensures that the for-
mation of the charges becomes expensive in terms of energy.
So for positive 	, this “chemical-potential” term has the ef-
fect of suppressing configurations containing defects. In
simulation with this modified Hamiltonian, a calculation of
�E, the energy change associated with an attempted move of
a spin, involves calculations of the changes in topological
charges associated with the four unit square plaquettes which
share the spin under consideration. For almost complete sup-
pression of the defects, the value of 	 was chosen to be
between 5 and 20 irrespective of temperature. The 	→

limit of Eq. �2� indicates an ensemble in which configura-
tions containing topological defects are not allowed. We
started our simulation in that restricted ensemble with a con-
figuration in which all the spins are aligned parallel to one
another; i.e., there is no topological defect. The restricted
simulations were carried out by using the modified Metropo-
lis spin update algorithm described earlier in this section. We
performed our restricted simulations on system sizes with
linear dimension L=16, 32, 64, and 96 with periodic bound-
ary conditions. The 	=0 corresponds to an unrestricted
simulation, where no suppression of topological defects take
place.

For the purpose of calculating various thermodynamic
quantities, we have used multiple histogram reweighting
technique of Ferrenberg and Swendsen �29�. In the restricted
simulations, 106 MCS were taken for equilibration and 107

MCS were used for computing the raw histograms �both en-
ergy and order parameter histograms�. The value of p2 was
taken to be 50 in order to carry out the restricted simulations.

III. RESULTS AND DISCUSSIONS

In this section we present in detail the results obtained
from our simulations.

A. Behavior of topological excitations near phase transition

We used the method described in Sec. II to determine the
average defect pair density ��� of the system. The variation
in the � with the dimensionless temperature T is shown in
Fig. 2 for several values of the parameter p2. The average
defect pair density is found to increase sharply as T increases
through the transition temperature Tc�p2� and appears to ex-
hibit a sharp jump at Tc�p2�, particularly for p2�1. Figure 2
indicates that Tc�p2� decreases as the values of p2 increases.
It is evident from Fig. 2 that for larger values of p2, at some
temperature Tc�p2�, vortices suddenly appear in great num-
bers and a first-order phase transition takes place which is in
accordance with the explanation of Himbergen �6�. It may be
noted that Jonsson et al. �11� also performed MC simulations

on a 2D XY model with a modified potential, which is essen-
tially equivalent to that of Eq. �1�, and interpreted the first-
order transition to be of vortex unbinding type.

We have also studied the behavior of topological excita-
tions with the parameter p2. The average defect pair density
��� as a function of the parameter p2 is plotted in Fig. 3 for
three different system sizes at a temperature T=1.12 which is
above the transition temperature of the model for p2=50. We
observe that above the transition temperature, the data for �
versus p2 are nicely fitted by the following expression:

��T� = �max − 
�T�exp�− ��p2� . �3�

Equation �3� takes into account both vortices and antivorti-
ces. The values of �max for the three system sizes are listed in
Table I. There is no significant system size dependence of the
parameters and it may be noted that � increases with p2. In
the limit p2→
, the system contains only vortex excitations.
This means that in the high p2 limit, the system must be
disordered even at very small temperatures and consequently
the transition temperature must be very low. This is the rea-
son behind the decrease in the transition temperature with
increase in p2. In this context, we refer to the work of Ro-
mano et al. �30� who, in a MC study of 2D generalized XY
model with spin component n=3, discussed the nature of the
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FIG. 2. Average defect pair density � plotted against dimension-
less temperature T for L=64 for various values of p2.
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phase transition with the variation in a generalized param-
eter.

We have also calculated the defect core energy �Ec� for
various values of p2. Because there is always a positive-
energy cost Ec associated with the creation of a vortex core,
thermally excited vortices in thermal equilibrium always
contribute terms proportional to exp�−Ec /T� to the partition
function. Therefore the total number of topological charges
�n� shows an exponential behavior exp�−Ec /T� at low tem-
peratures and is given by

n = n0 exp�− Ec/T� . �4�

Taking natural logarithm on both sides of Eq. �4�,

ln n = ln n0 −
Ec

T
. �5�

The defect core energy Ec for each p2 is determined from the
linear fit of the plot ln n versus 1 /T, and Fig. 4 shows the
plot of variation in Ec versus p2. The defect core energy Ec
for p2=50 model �which is known to exhibit a strongly first-
order phase transition� is found to be 11.911�0.15 while
that for p2=1 model �which is known to exhibit a continuous
phase transition� is found to be 7.560�0.019. This is in ap-
parent contradiction with the main finding of Saito �31� who,
in a MC study of a system of interacting dislocation vectors,
predicted a continuous phase transition due to large core
energy and a first-order phase transition due to small core
energy.

B. Restricted simulations with no defects

Before presenting our results of restricted simulations, we
briefly define the thermodynamic quantities that we have

evaluated. The MC simulations were carried out with the
modified Hamiltonian given by Eq. �2� where the new term
acts as a “chemical potential” for the defects.

The specific heat Cv is evaluated from the energy fluctua-
tions

Cv =
1

N

��H2
 − �H
2�
T2 �6�

where T is the dimensionless temperature and N=L2 is the
total number of spins. The average order parameter is given
by

�P1
 = �cos �
 �7�

where � is the angle that a spin makes with the preferred
direction of orientation and the average is over the entire
sample. The first rank pair-correlation function is defined as

G1�r� = ��cos �ij�
r �8�

where i and j are two spins separated by a distance r. The
second-rank pair-correlation function is defined as

G2�r� = �P2�cos �ij�
r �9�

where P2 is the second-order Legendre polynomial.
We did not find any evidence for a phase transition from

the ordered to the disordered phase at any temperature in the
simulations of the restricted ensemble where configurations
containing defects are not allowed.

The energy histograms obtained for L=64 are shown in
Fig. 5. For this lattice, simulations were performed at 12
different temperatures ranging from T=1.0375 to T=1.1600.
It is evident from the energy histograms that the dual peak
nature of the histograms as obtained for an unrestricted simu-
lation �19� disappears in a restricted simulation. It is known
that the dual peak nature of the histograms is a signature of a
first-order transition where two phases can coexist at a given
temperature.

Figure 6 shows the temperature dependence of the aver-
age energy �E� for a number of lattices, as obtained by ap-
plying the histogram reweighting technique. For comparison,

TABLE I. parameters for the fit of ��T�=�max−
�T�exp
�−��p2� for different L.

L �max 
�T� �

32 0.2866�0.002 0.411�0.005 0.301�0.008

48 0.2876�0.002 0.406�0.006 0.297�0.009

64 0.2878�0.002 0.406�0.006 0.296�0.009
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FIG. 4. The defect core energy Ec plotted against the parameter
p2 with the linear fit represented by the dotted line. The error bars
are of the dimension of the symbols used for plotting.
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the same plots for unrestricted simulations �where no defect
is suppressed� are shown by thick lines in the same figure. It
is evident from the figure that the energy changes only
gradually and smoothly with temperatures for the restricted
simulations while a sharp variation of the same with tem-
perature is observed in the unrestricted case. The average
value of the order parameter �P1
 defined in Eq. �7� is always
nonzero for a finite-size system. Hence we have studied the
system size dependence of �P1
. The values of �P1
 at T
→
 versus 1 /L are plotted in Fig. 7 and the system size
dependence is, in fact, well fitted by the form �P1
= P0
+a /L with P0=0.587�0.005 and a=3.035�0.141. It is
clear from Fig. 7 that there is no indication of �P1
 extrapo-
lating to zero in the thermodynamic limit L→
 and thereby
suggesting a state with long-range ferromagnetic order.

The specific heat Cv was obtained from the energy fluc-
tuation relation �Eq. �6��. The specific-heat data for L=64 in
a restricted ensemble are shown by dashed line in Fig. 8
where the results for the unrestricted case are also shown by
solid line for comparison. For clarity the data for the re-
stricted and the unrestricted simulations are plotted in two
different scales. While Cv has a large peak height �
700� at
the transition temperature in the unrestricted case, which pre-
sumably is a signal of a phase transition in a finite system, in

the defect-free case the peak height �
16� is drastically re-
duced and almost disappears in comparison with the normal
case �where no defect is suppressed�. We would like to argue
that, in the restricted ensemble, the existence of a peak in Cv
of insignificant height �compared to that of an unrestricted
ensemble� over the temperature range cannot be a sign of a
phase transition. These may be attributed to the fact that
complete suppression of topological defects is never pos-
sible; there always exist a small number of residual charges
in the system. We have observed that as the value of 	 is
increased, the number of residual topological charges de-
creases and the peak height in Cv gets reduced. We have run
the restricted simulation for different values of 	 and con-
firmed this behavior. However, it may be noted that beyond a
certain value of 	, the peak height in Cv does not change
with any further increase in 	 which may be attributed to the
presence of some residual defects as already mentioned. We
have also calculated the free-energy-like quantity A from the
energy histograms. It is defined as A�E ;� ,L ,N�
=−ln N�E ;� ,L� where N�E ;� ,L� is the histogram count of
the energy distribution. Figure 9 shows the plot of the quan-
tity A against E for L=64. The inset of Fig. 9 shows the same
plot for the original model �Eq. �1�� where a double-well
structure of equal depth at the transition temperature signals
a first-order transition. We observe the absence of any such
double-well structure in A when defects are suppressed. We
would be inclined to conclude from the results of Cv and A
that the defect-free phase exhibits no phase transition at all.

We now turn to pair-correlation functions defined earlier
in this section. Figure 10 shows the plot of G1�r� against r
for L=64 in the restricted as well as the unrestricted cases.
The first rank pair-correlation function G1�r� for p2=50 at
temperatures T=1.0500 and T=1.1000, which is much
higher than the transition temperature of the original model,
decays exponentially to zero in the unrestricted simulations,
as it should, in the complete absence of long-range order and
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FIG. 6. The average energy per particle E plotted against dimen-
sionless temperature T for different lattice sizes. The thick curves
�on the left� correspond to unrestricted simulations.
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a best fit with G1�r�=
 exp�−�r� yields 
=0.745�0.01 and
�=0.700�0.01 for T=1.0500 and 
=0.806�0.009 and �
=0.944�0.009 for T=1.1000. For the simulation where the
defects are suppressed, G1�r� decays algebraically and a best
fit with G1�r�=ar−b+ f yields the parameter a
=0.064�0.003, b=0.175�0.016, and f =0.806�0.001 for
T=1.0500 and a=0.019�0.009, b=0.271�0.018, and f
=0.590�0.001 for T=1.1000. It may be noted that the pa-
rameter f is the asymptotic value of the pair-correlation func-
tion. The next-higher-order correlation function G2�r� against
r for L=64 is plotted in Fig. 11 at T=1.0500 and T
=1.0100 for both the cases. The results indicate that G2�r�
decays algebraically in both the cases and long-range order
prevails in the system via higher-order correlation functions.

We now need to address the question of phase-space con-
nectivity before arriving at the conclusion that topological
defects are indeed necessary for the phase transition. Since
we have used large values of 	 in our restricted simulations
in order to suppress the evolution of topological defects, we
have to demonstrate that the observed behavior is not caused

by trapping of the system in a small region of phase space
with nonzero �P1
. Any MC study is guaranteed to generate
appropriate ensemble averages if there is a path connecting
any two points in the phase space with nonzero transition
probability. We have investigated the phase-space connectiv-
ity by observing the evolution of the order parameter and
energy with MC sweeps. The connectedness is satisfied if the
observed quantities for different initial states converge to the
same final value. In Fig. 12, we have shown that for L=64,
after suppressing the defects �by using 	=20� on the square
plaquettes, the final values of the order parameter is same for
three different initial configurations. This observation en-
sures that we can use a value of 	 up to 20 without violating
the phase-space connectivity and the observed nonvanishing
of �P1
 is not a result of trapping of the system in the phase
space.

IV. CONCLUSIONS

It is established in this paper that topological defects play
a very crucial role in the phase transitions exhibited by the
models we discussed. We have observed that the average
defect pair density grows rapidly with the increase in p2

�which increases the nonlinearity of the potential well�. For
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FIG. 11. The plots of the pair-correlation function G2�r� against
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FIG. 12. The evolution of the order parameter at T=1.1800 for
L=64 lattice after suppressing the defects using 	=20 for three
different initial configurations: P1=0.999, P1=0.244, and P1

=0.012. The final values of the order parameter have the same
average value.

SUMAN SINHA AND SOUMEN KUMAR ROY PHYSICAL REVIEW E 81, 041120 �2010�

041120-6



high p2, the potential well becomes narrower so that there is
an insufficient increase in the defect density at low tempera-
tures and then, at a certain temperature, they suddenly appear
in the system in great numbers. Therefore it may be thought
that for larger values of p2 the class of models we have
investigated behaves like a dense defect system and gives
rise to first-order phase transition as has been predicted by
Minnhagen �8–10�. It has also been observed that the first-
order transition is eliminated totally when configurations
containing topological defects are not allowed to occur and
the system appears to remain ordered at all temperatures.
Hence topological defects are necessary to account for the
first-order phase transition for larger values of p2.

Another point which must be mentioned before ending
this section is the performance of the Metropolis algorithm
with the modification discussed earlier in this paper. The
modification makes us free from tuning any adjustable pa-
rameter while simulating a continuous model and this has
resulted in the model being successfully simulated.
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